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Introduction

We would like to thank all the people who contributed to the 31st Summer School — Conference
“Dynamic Systems and Complexity”, held at the Department of Computer Science and Biomedical
Informatics, co-organised by the Department of Physics, University of Thessaly, from July 7 to July
15, 2025. This year’s Summer School - Conference honoured the overall scientific contribution
of Kyriakos Hizanidis, Professor Emeritus at NTUA. We extend our sincere thanks to lecturers
and speakers who accepted our invitation or volunteered to deliver either introductory or research
presentations, enriching the scientific programme with their expertise.

This volume contains the abstracts of all presentations delivered during the conference. For clarity and
ease of reference, the abstracts are organized in two sections and listed alphabetically by speaker. We
hope this collection will serve as a useful resource for all participants and future readers interested in
the topics explored during the event.

Evyopiotovpe Bepudmg 66ovg cuveéParav 6to 310 Oeptvo ZyoAeio — ZuvéEdpPLo «Avvapkd ZVoTHHOTOL
kot [ToAvmAokdtn oy, To omoio Tpaypotomodnke oto Tunua IIAnpopopikng pe Epappoyéc otn Buot-
aTpiKn kot cvvdopyavadnke pe 1o Tunpa @ucwng tov Havemiompiov Osocaliog, amd T1g 7 £mg TG
15 TovAiov 2025. To gpetivd Oepivd LyoAeio - ZuvESPLO TIUNGE TNV CLUVOAIKY| EMIGTNHOVIKT GUVEL-
oc@opd tov Kvpiakov Xitlavion, Opotipov Kabnyntov E.M.II. Exepalovpe dwaitepeg evyopiotieg
OTOVG OOACKOVTEG KOl OLMANTEG TTOL amodEOnKay TNV TPOGKANGY LaG 1] TPOcEEPONKAY VO TTOPOV-
OlLI00LV EICOYWYIKEG 1) EPELVNTIKES OIOAEEELS, EUTAOLTILOVTOG TO ETIGTNUOVIKO TPOYPOLUO [UE TNV
e€e1dikevon kot TIg YVOGELS TOVG.

O moap®dV TOHOG TEPIAAUPAVEL TIG TEPIMYELS OADV TMV TOPOVCIAGEMY TOV TPAYLATOTOONKAV KOTA
™ d1dpketa Tov cvvedpiov. [a Adyovg cagnvelag Kot S1evkOAVLVONG TG 0val)TNONG, Ol TEPIANYELS
&xouv opyavmbel oe 000 evotTTES Kot TOPovotdloviot aAafnTikadg avd opuAnt). EAriCovpe 6t
ovAloyn avtn Bo amoteAéoel Eva YPNCIUO EPYOAEID Y10l OAOVG TOVG CUUUETEXOVTES, KOOMS Kol Yio
HEALOVTIKOVG OVOYVDGTEG EVOLOLPEPOUEVOVC Yia TOL OEpaTa TOV avarTuyOnKay Kotd T O1dpKeLo TOL
ouvedpiov.
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Abstracts

Keynote Speakers

Hizanidis, K.
2yoin Hiexktporoywv Mnyavikwv ko Myyavikav Yroroyiotwv E.M.I1.

KBANTIKH YIHHOAOTIETIKH XE HAEKTPOMATNHTIKA ITPOBAHMATA XTO
MATINHTIZEMENO [IAAXZMA: ATTO TH ”ETPENTITKEPONIOIHEZH” XTIX  EGMETPIKEX
AATEBPEX KAI®OPNT

B TopovGLHGTOVV 01 PACIKESG 0PYES TOV KPAVTIKMY DITOAOYIGTIKOV TEXVIK®V Y10 TNV EMIAVGCT KAOC-
oKV TpoPAnudtov. H épeacn Oa givatl to TpdPfAnua te 514006Mg NAEKTPOUAYVITIKGOV KUUATOV GE
LoyVNTIGUEVO TAAG . Oa akolovOnBovV 600 EexmPloTEG OMTIKEG Y10 TV LETEYYPOUPY] TOV NAEKTPO-
poyvntikoy TpofAnuatog oe cHotnua mov B dvvator va emivbel pe kPavtikd tpomo: (o) avtd g
peteyypaeng o€ mpofAnua tomov Schr?dinger kot (B) g ovomapAcTaong TOV NAEKTPOLOYVITIGHOV
pe texvikég g ['eopetpikng AlyePpog tov Clifford og ydpovg (1+3 dwnotdoewv) Minkowski.
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Mendonca, J. T.
GoLP/IPFN, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Two WAVES - ONE PARTICLE

This basic three-body interaction is phenomenologically very rich, and covers several diAerent
processes, from stochastic acceleration to nonlinear Compton scattering. We discuss both classical
and quantum descriptions of this interaction, and illustrate their physical consequences [1]. In the
classical description, we use a Superhamiltonian formulation of the particle motion (electron, or ion)
in two electromagnetic waves, and show that it is non integrable. DiAusion in phase-space describes
stochastic acceleration, and can explain the broad electron energy spectrum observed in intense laser-
plasma interactions. In the non-relativistic limit, it can also be explain the stochastic heating of ions
by electrostatic waves. In the quantum description, we use Volkov solutions of the relativistic wave
equations (Klein-Gordon and Dirac), and shown that they are able to explain the nonlinear Compton
scattering of photons and plasmons [2], thus generalizing the traditional view of Compton scattering,
which only involves photons. This problem is highly relevant to in the present experiments with
PetaWatt laser systems, where the nonlinear quantum plasma regime becomes accessible. Compton
scattering is the basic ingredient for a consistent plasma quantum theory, as recently shown in [3]. It
is also known that the so-called inverse Compton scattering, which corresponds to scattering of low
energy photons by highly relativistic particles, is very important in Astrophysics. The same Volkov
solutions can also be used to describe the nonlinear regime of quantum Landau damping, showing that
in this regime the electrons can emit and absorb more than one plasmon. Explicit expressions for this
multi-plasmon Landau damping can be derived [4]. This explains the possible occurrence of multi-
plasmon absorption of electrostatic waves by electrons, and confirms previous simulation results. A
similar formalism can be used to describe photon Landau damping of electron plasma waves. Such
a similarity with quantum electron Landau damping is not surprising, given the undulatory nature of
photons. Relevance of both processes to laser acceleration is exemplified. My lectures will be based
on joint work with Antonio Galves, Aline Duarte and Guilherme Ost.

References:

1. J.T. Mendonga, Phys. Rev. , 28, 3592 (1983).

2.]J.T. Mendonga and F. Haas, Phys. Scripta, 98, 065603 (2023).

3. J.L. Figueiredo, J.T. Mendonga and H. Tercas, Phys. Rev. A, , (2024).
4. F. Haas, J.T. Mendonga and H. Tercas, Phys. Rev. E , , (2024).
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Ram, A.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MA 02139. USA.

PLASMA SCIENCE AND FUSION CENTER

For almost four decades, Kyriakos Hizanidis and I have interacted intellectually and socially — through
jocular repartee, as well as by provoking, pestering, and irritating each other. Analogous to fine wine,
our friendship has become richer and more enduring over time through common goals and mutual
understanding. The underlying stimulant has been our passion for physics. Over the years, our domain
of interaction has drawn in younger and vibrant physicists in Greece and in USA. In this talk, I will
discuss different topics we have explored in plasma physics along with my vision for the future.
Plasmas, whether occurring in the natural environment or in fusion devices, are inherently complex
dynamical systems. Our studies on probing this complexity have ranged from linear to nonlinear
classical plasma physics and, recently, on developing a framework for plasma physics within quantum
information sciences.
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General Speakers

Anastassiou, S.

Department of Mathematics, University of Western Macedonia, Kastoria, GR52100,
Greece

HYPERBOLIC THEORY OF DYNAMICAL SYSTEMS: SHORT INTRODUCTION THROUGH
EXAMPLES

This lecture introduces the fundamental concepts of the Hyperbolic Theory of Dynamical Systems,
providing an accessible entry point for graduate students. We shall explore the core ideas of hyperbolicity,
including stable and unstable manifolds, uniform expansion and contraction, and the study of hyperbolic
systems. Through intuitive examples, such as Anosov diffeomorphisms, the Smale horseshoe and
Plynkin attractors, we shall illustrate how hyperbolicity leads to chaotic yet structured behaviour.
Emphasis will be placed on geometric intuition and generic properties of Dynamical Systems. No
prior expertise in dynamics is assumed, hoping that this lecture will serve as a friendly introduction
to a cornerstone of modern dynamical systems.

References:

1. J. Palis, W. de Melo, “Geometric Theory of Dynamical Systems”, Springer, 1984.

2. A Katok and B. Hasselblatt, “Introduction to the Modern Theory of Dynamical Systems”, Cambridge
University Press, 1995.

3. C. Robinson, “Dynamical Systems”, 2nd edition, CRC Press, 1998.
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Bezerianos, A.
University of Patras, GR

EEG ANp FMRI TECHNIQUES AND BIOMARKERS ON BRAIN COMPLEXITY AND
DyNaAMICS

Understanding the intricate complexity and dynamics of the human brain is fundamental to elucidating
the mechanisms underlying both normal cognitive function and the complex pathophysiology of
neurological and psychiatric disorders. Electroencephalography (EEG) and functional Magnetic
Resonance Imaging (fMRI) stand as the primary non-invasive neuroimaging modalities, offering
complementary perspectives on brain activity. EEG provides a direct measure of neural electrical
activity with high temporal resolution, capturing rapid changes in brain states, while fMRI indirectly
assesses neural activity through hemodynamic responses, yielding high spatial resolution and the
ability to visualize deep brain structures. This report synthesizes recent breakthroughs in both EEG
and fMRI techniques, alongside the biomarkers identified using these methods, for studying brain
complexity and dynamics in healthy individuals and those with various neurological and psychiatric
conditions. The advancements in high-density EEG systems and sophisticated signal processing,
the emergence of mobile EEG for naturalistic data acquisition, and the progress in EEG-based
Brain-Computer Interfaces are discussed. Furthermore, the report highlights the impact of advanced
analytical methods such as dynamic functional connectivity and the transformative role of Machine
Learning (ML) with paradigms from my work on cognitve disorders and human - autonomous car
interactions. By examining the established and emerging EEG and fMRI biomarkers across a spectrum
of brain states and disorders, this report underscores the crucial role of these neuroimaging techniques
in advancing our understanding of brain complexity and dynamics and their potential for clinical
translation in diagnosis and treatment monitoring.

Note: Prepared by the author in collaboration with Gemini, a large language model trained by Google.

References:

1. Yen, C,, Lin, C. L., & Chiang, M. C. (2023). Exploring the Frontiers of Neuroimaging: A Review
of Recent Advances in Understanding Brain Functioning and Disorders. Life (Basel, Switzerland),
13(7), 1472.https://doi.org/10.3390/1ife13071472

2. Dimitriadis S. I. (2021). Latest Advances in Human Brain Dynamics. Brain sciences, 11(11), 1476.
https://doi.org/10.3390/brainscil 1111476

3. Wei,H.-L., Guo, Y., He, F., & Zhao, Y. (2025). EEG Signal Processing Techniques and Applications—
2nd Edition. Sensors, 25(3), 805. https://doi.org/10.3390/s25030805

4. Sun, Y., Yin, Q., Fang, R., Yan, X., Wang, Y., Bezerianos, A., Tang, H., Miao, F., & Sun, J. (2014).
Disrupted Functional Brain Connectivity and Its Association to Structural Connectivity in Amnestic
Mild Cognitive Impairment and Alzheimer’s Disease. PLoS ONE, 9.

5.Qi, P, Ru, H., Gao, L., Zhang, X., Zhou, T., Tian, Y., Thakor, N.V., Bezerianos, A., Li, J., & Sun, Y.
(2019). Neural Mechanisms of Mental Fatigue Revisited: New Insights from the Brain Connectome.
Engineering.

6. Wang, H., Dragomir, A., Abbasi, N.I., Li, J., Thakor, N.V., & Bezerianos, A. (2018). A novel real-
time driving fatigue detection system based on wireless dry EEG. Cognitive Neurodynamics, 12, 365
- 376.

7. Chen, C., Ji, Z., Sun, Y., Bezerianos, A., Thakor, N.V., & Wang, H. (2023). Self-Attentive Channel-
Connectivity Capsule Network for EEG-Based Driving Fatigue Detection. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 31, 3152-3162.
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Bountis, A.
THovemarnuio Hotpawv, [atpo 26500

I'tatt ONOMAZOYME THN IIOAYITAOKOTHTA ENIZETHMH;;

2V opuAdio ot Ba eoTIdcoVUE OTIG PacIKEC £Vvvoleg ToL KAAdoL Tov ovopaletor Emotiun g [o-
AmAokdtrag Kot Bo avaeepbovpe oe BepeMddelg g apyég v v Kotavonon g Poong, and
dmoyn otaTikig aALd Kot duvapukng copmeptpopds. [pota Ba meprypdyovpe epappoyéc g Ilo-
ADTAOKOTNTOG O YEMUETPIKEG LOPOES POUAL®V Kol 0EVOp@V, Kot Ba avakaAvyovpe 0Tt 0dNyoHV Gg
OYNMOTO LE U1 aKEPALEG SLOOTAGELS TOV ovoudlovTon PpakTaA. Katdmy Oa (uAcovE Yo OpOOTKES
KIWVIOELG TOLAMMV 1 YapLdVY Kot T AEITovpyio Tov eyke@AaAiov. ['a va yivouv KaAdtepa avTIANTTEG Ot
®¢ dvo €vvoleg, TIG TapoLGLAl®m €00 HECH OTAMY TOPAOEYLATMOV GTO OTOio £XM KOt YD EPYOOTEL.
Katdé ™ didpketa tov 310v Xyoleiov, Oa £xovpe TV gukopio VoL TIG OVOADGOVUE TEPULTEP® KO VOl
avTiAaneovpe v peyain tpoceopd e Emotung g [HoAvmlokodtntag o€ mhumoiio Oépata go-
OIKAOV OAAG KO BLOAOYIKOV ETICTNUOV.

AweOviic Bipamoypagia:

1. “Complexity Science: The Study of Emergence”, Henrik Jeldtoft Jense, Cambridge University
Press, 2022.

2. “Foundations of Complex Systems”, Greg. Nicolis and Cath. Nicolis, World Scientific, 2007.

3. “Complexity”, R. Badii and A. Politi, Cambridge University Press, 1997.

4. G. Nicolis and I. Prigogine, “Exploring Complexity”, Freeman, New York, 1989.
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Bountis, A.
Havemornuio ozpav, [atpo. 26500 ELLdoo.

MH I'PAMMIKH AYNAMIKH KA1 XAOZ

2mv eloaymyikn avt) optMa Ba tpooradnow va Enyno® BePeAM®OELS EVVOLEC TOV EMIGTNOVIKOV
KAadov ov ovopdaletor Mn I'poppkn Avvopikn kot Xaoc. pe 6060 10 Juvatdv amhoVoTEPO TPOTO.
Ot évvoteg avtég £yovv Kot Bdon padnuotikd mepleyodpuevo, eivar OMS ApPNKTO GUVOESEUEVES E
(QOVOLEVO TOV GLVOVTOVUE GE TOALEG eMGTNUES. [l va yivouy KaAdTepa avTIANTTES, TIG TaPOoVG1alm
HES® eVOC apBod EPOTNUATOV TOV ATOLTO OO TOVS OKPOOTES VO TPOGTAHNGOVY VO OTAVTHCOVY
KaTd TN ddpKe TOV XyoAeiov. Movov €161 Ba pmopEGoLY Vo KOTOVO GOV KOl VO, EKTILGOVY TN
oNUACIO TOV EVVOLDV TNG OLVOUIKNG KoL T OXE0T] TOVG LE PEAAICTIKA QOIVOUEVE OADV TOV OETIKMOV
Emomuov. Katd ) didpxeta Tov 31ov ZyoAeiov, Ba Exovpe v gukopio va TIC ovoADGOLVLE TEPOL-
TEPO Kot Vo, avTiAneBovpe v peydAn tposeopd twv Mabnuatikdv oty Babitepn katovonon e
@voMg, TG Long, AAE Kol TOV avOpOTIVEOV GYECEMY OV SETOVV TOV KOGHO YOP® LLOG.

Avagopég:

1. 2. Avactaciov kot T. Mrotdving, «Zvveyn kot Atakpitd Avvopkd Zvotiuato kot Etcayoyn om
Ocwpia Tov Xdovey, A. ITvevpatikdc, Adnva, 2022.

2. T. Mmobvng, «Avvapkd Xvotpota kot Xdog», Exd. [amacwtmmpiov, AOfva, 1995.

3. T. Mrovving, «O Oavpactog Koopog tov @pdxtai», Exd. Awvtep Mrovkg, AOnva, 2004.
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Constantoudis, V.
Ivetitobto Navoemotiung kor Novoteyvoloyios E.K.E.®.E. «Anuoxpitocy

MoP®OKAAEXMATIKH ' EOMETPIA KAI [TIOAYTAOKOTHTA EIMI®ANEION ME
E®APMOTEE XTH MIKPOHAEKTPONIKH» KAI NANOTEXNOAOTIA

2mv oMo ovt)) B suNTHGOVUE EPAPUOYEG TNG HOPPOKANGLOTIKNG YEOUETPIOG OTNV UIKPONAE-
KTPOVIKN KOl TNG TOALTAOKOTNTOG 6T vavoteyvoroyia. Kot otig 600 mepmtmoelg 1o onueio emapng
Ba elvar 1 TpoyOLTNTO TOV EMPOVEIDV GTN] VOVOKAILOKO. XTNV TEPITTMOON TNG UIKPONAEKTPOVIKTG Ot
ECTIGOOVUE GTNV TPOYLTNTO TOV EMPOVEIDV NG SOUNG TV TpaviicTop GTO TPAOTO GTAO TNG Al-
BoypaPIkng oynUaToToincng Tovg, EVA 6T vavoteyvoloyia Oa eilcdyovpe v £vvola NG TOALTAO-
KOTNTOG EMUPAVELDOV Kol Bol O1EPELVIGOVUE TN GUVIEST] TNG UE TIG WOIOTNTES TOV EMPAVEIDV (KLPIWG
OTTIKEG KoL O1aBpoyng) Kot Tig dALeg neBdO0VE TEPTYPAPNC TG LOPPOAOYING TOVS. Ba ToViGovpEe TV
Kpiown onuocio g TpaydTNTOG KOl THG CTOXUCTIKOTNTOS GTN cLYYPOVN Propnyovio Tov nuoym-
YOV Kol T GOVOEST] TOVG UE TN HETAPOON Ao TNV ap)LTEKTOVIKT von Neumman GTig VEVPOLOPPIKES
npoceyyioels. Téhog, Ba emoTpéyovue o€ To10VG Be@pnTIKOVS TPOPANHATIGHOVS Kat B cuinToovE
KOTA TOCO UITOPOVLE VO OPIGOVUE TNV TOALTAOKOTNTO LLOG EXIPAVELNS MG TNV OVTIOTOON TNG OTNV
OLOYEVOTOINGT TNG.

12
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Drakopoulos, V.

Department of Computer Science and Biomedical Informatics, University of
Thessaly, Lamia, Greece

FRACTAL GEOMETRY: THEORY AND APPLICATIONS

Fractal geometry has become an influential field of study, deeply impacting numerous areas of
mathematics and sciences over recent decades. Rooted in the works of Benoit B. Mandelbrot [1],
fractal geometry explores mathematical structures that exhibit self-similarity at varying scales. Unlike
traditional Euclidean geometry, which deals with regular shapes, fractal geometry applies to irregular
and complicated patterns found in nature, such as coastlines, mountains, and biological structures [2].
Fractal objects are characterised by intricate, repeated patterns, whether deterministic or statistical
in nature numbers [3]. They have gained attention not only for their theoretical depth but also for
their practical applications. These include areas like harmonic analysis, probability theory, dynamic
systems, computer graphics, and even fields as diverse as physics, biology, and economics [4].
The appeal of fractals extends beyond mathematics, blending artistry with mathematical theory and
providing a novel way to represent complicated natural forms. This presentation provides an overview
of fractal geometry, distinguishing between self-affine and self-similar structures and discussing their
relevance in both theoretical contexts and real-world applications [5]. Special attention will be paid
to the role fractals play in fields such as chaos theory, image compression, and dynamic systems
modelling [6].

Keywords: Computer Graphics, Dimension, Dynamic System, Fractal, Interpolation, Chaos.

References:

1. B. B. Mandelbrot, “The Fractal Geometry of Nature”, W. H. Freeman and co., San Francisco, 1982.
2. M. F. Barnsley, “Fractals everywhere”, 3rd ed., Dover Publications, Inc., 2012.

3. K. Falconer, “Fractal Geometry: Mathematical Foundations and Applications”, 3rd. ed., John Wiley
& Sons, Ltd, 2014.

4. T. MmobHving, “O Oavpooctoc kdopog tov epdxktad”, Leader Books, 2004.

5. P. R. Massopust, “Fractal functions, fractal surfaces and wavelets”, 2nd ed., Academic Press, San
Diego, CA, 2016.

6. V. Drakopoulos, “Fractal-based image encoding and compression techniques”, Commun. — Scientific
Letters of the University of Zilina, vol. 15 (3), 48-55, (2013).
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Efremidis, N.

Department of Mathematics and Applied Mathematics, University of Crete,
Heraklion, Crete 70013, Greece

A UNIFIED DESCRIPTION OF OPTICAL THERMODYNAMICS

Optical thermodynamics is a recently developed theory that utilizes principles of statistical mechanics
in weakly nonlinear multimoded optical settings. Using optical thermodynamics the collective behavior
of utterly complex system such as multimode and multicore fibers, waveguide arrays, and coupled
microresonators among others, can be unveiled in a physically meaningful context. We analyze
fundamental properties that lie in the core of this theory. Specifically, we find that the extensive
parameters of the entropy are naturally provided by the propagation constants. Thus, they can be
different depending on the system under investigation. We investigate a variety of continuous and
discrete settings. In the case of polyatomic lattices, different optomechanical pressures can be defined
for each bond. In addition, we develop a theory that can be used to define pressure in systems with
non-abrupt boundaries, such as graded index multimode fibers. We analyze the limitations of the
Rayleigh-Jeans distribution which might lead to decreasing entropy and pressure singularities.

14
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Efthymiopoulos, C.

Tunuo MaOnuotikwov Tullio Levi-Civita, Ilavemiotiuio g [lovrofa, TK. 35121
Ilavropo, Italia

2 YNTONIEMOI KAI AIAXYEH ARNOLD

Me agpetnpio v tpototoplaxn epyacio tov Arnold [1], o 6pog “dudyvon Arnold” €yl ypnoorom-
Oei extevac ot PipAoypagia yio vo TeptypayeL THV 0Py YOOTIKN O1dYLON GTO YDPO TOV ‘OPAGEMV’
(ad10paTikdV avoALOIOT®V) GE UN-YPOUUIKA SUVOUKE GUCTHUATO TPLOV 1] TEPICCOTEP®V Pabudv
elevbepiag. H opdia Ba emkevipwbel oe pio avtovoun eicaywyn otig Pacikés EVVOLEG TOV GYETI-
Covtan pe 1o pawvopevo g otdyvong Arnold. ®a cu{ntmoovpe enionNg TAOG TO PUIVOUEVO QLTO LG
Bonba vo meptypdyovpe Kol VO TOGOTIKOTOGOVUE SLAPOPO. EVOLAPEPOVTA PLGIKO POUIVOUEVA TOV
OTTOVTMVTOL GE TEPLOYES TOV PLGIKMV EMIOTNUDOV GE TOAD SUPOPETIKES KAMUOKES, OO TNV LOPLOKT
QLOIKN KOl TN QLGIKY| TOV TAAGHATOC, HEXPL THV Ovpdvio punyavikn Kot v eEEMEN tov Hlako0
oLOTNHOTOG. o dDCOoVE KOl OpIoUEVE aplOUNTIKG Tapadetypota pe ) Pondeia Tov Aoyiopikon
mathematica. To wapadeiypoata avtd fondodv va yivel KatavonTdg 0 KEVIPIKOG UNyoviouos Tiow amd
TO QUIVOUEVO, TTOL 1] GTIYHOHO ATTMAELL TOV 0O1aPATIKOD YOPAKTPO OPIGUEVMV TPOCEYYIOTIK O10LTT)-
POVUEVOV TTOCOTNTMOV KOOMG 01 TPOYLEG KIVOUVTOL TANGIOV ‘OHOKAVIKAOV BpoymVv’, dNAadN KOVTH OTIC
SLYWPLOTIKES OPICUEVOV OTTADV 1) TOALATADY GLUVIOVIGU®MV TOL VIO LEAETT SLVAUIKOD GLUGTNLOTOC.

Avagopég:
1. Arnold, V.1., Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl. 6,
581 (1964).
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Halley, J.

Laboratory of Ecology, Dept. of Biological Applications & Technology University
of loannina

HYPER-EXPONENTIAL GROWTH: FROM EPIDEMIC MODELS TO THE EVOLUTION
OF SOCIETY

Today’s world is full of instances of hyper-exponential growth (HEG). Clear examples of HEG
have been identified, including the increase of the human population, the world economy and many
aspects of technology. While hyper-exponential growth appears less often in natural sciences than
exponential growth, it is especially important to understand of much that is happening today. Models
of HEG have been developed to understand biological phenomena such as cancer growth and the
dynamics of epidemics such as SARS-CoV-2. In this talk I will develop an epidemic model with
evolution of transmission rates to show how HEG emerges naturally in a complex biological system.
Solving the equations of growth, I show how many of the phenomena associated with HEG, such as
asymptotic increase in finite time, can be understood. Finally, I apply these insights to the wider issues
of importance, such as what is the nature of the collapse of hyper-exponential growth if it happens.
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Harsoula, M.
Axoonuio AOnvav

Y MEIPOEIAEIEX ['AAAZEIEE: APIOMHTIKA KAI ANAAYTIKA XTTEIPOEIAH KYMATA
IIYKNOTHTAX

Ot omelpoedeis Ppayioveg 6TOVE HEYAAOVG KOVOVIKOVS OTEWPOELDEIC Yohaieg etvan KOpOTO TUKVOTT-
TOG TOL OEV AMOTEAOVVOTL TAVTO 0Td Ta 1010 aoTEPLL. O eENynoove TV Bewpio TOV KOLOTOG TLKVO-
TNTOG Y10 TNV TEPITTMON AVOAVTIKOV SVVALKDV TOV TPOCOUEIDVOLV UEYAAOVS KOVOVIKOVG CTELPE-
oe1deic yaha&iec. (grand design galaxies). @a e£epEVVIGOVLE TOV YDPO TOV PACEMVY GE VA YOAAELOKO
HOVTELO OV TTPOCOUEUDVEL TIG omeipeg Tov 01koV poag [aialio pe oxomd tov aplfuntikd evromopd
TOV VOTAODOV TEPLOSIKMOV TPOYIDV TOV LTOSTNPILOLY AVTA TO. GTEPOEDN KOHOTA TUKVOTNTOC. OO
diéovpe OTL 01 TPOYLEG OVTEG efvat EMEMTIKEG e KOPLo dEova Tov aAAALEL TPOGAVATOAMGUO KOOMDS
OTOULOKPVVOUOGTE OO TO KEVTPO TOL Yohosio Kot 1 vépBeot| Toug oe OAeg Tig aktiveg dnpovpyet
10 omelpoeldés kopa. Eniong, Ba eEnynoovpie ) Bempio €DPECNG TPOCEYYIGTKMV AVAAVTIKMOV AVGEDV
TOV TEPLOOIKDOV OVTAOV TPOYLDV KOTAGKELALOVTAG TNV XAUIATOVIAVY] GE KOVOVIKT| Lopen (normal form
construction) pe v Ponfela twv cepav Lie.
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SUPERCONDUCTING OSCILLATORS: FROM ComMPLEX DYNaMmics To
NEUROMORPHIC COMPUTING

Since their discovery in the early 1960s, Josephson junctions (JJs) remain at the forefront of advancing
technology in superconducting electronics, sensing, high-frequency devices, and quantum science.
An important JJ-based device is the superconducting quantum interference device (SQUID), a highly
sensitive magnetometer that uses JJs to measure extremely small magnetic fields. From a dynamical
point of view, the SQUID is a highly nonlinear system exhibiting extreme multistablity and chaos.
In the first part of my presentation, I will talk about the complex dynamics of SQUID oligomers and
metamaterials, i. e. artificially structured media of periodically arranged, weakly coupled elements,
which show extraordinary electromagnetic properties and tunability. Another fascinating application
of JJs involves their exploration for the design of superconducting neuromorphic computing systems.
When combined in circuits, coupled JJs can emulate sophisticated properties found in biological
neurons. From a technological point of view, JJ-based neuromorphic systems are particularly appealing
due to their capacity to operate in great speeds and with low energy. In the second part of my talk I will
present recent work on such JJ-based systems and discuss the mechanisms underlying the exhibited
dynamical properties relevant for neurocomputation.

References:

1. G.Baxevanis and J. Hizanidis,“Inductively coupled Josephson junctions: A platform for rich
neuromorphic dynamics,” Physical Review E, v. 111, p. 044214, 2025.

2. J. Cai, R. Cantor, J. Hizanidis, N. Lazarides, and S. M. Anlage, “Effects of Strong Capacitive
Coupling on Hysteretic rf SQUID Metamaterials,” Superconductor Science and Technology, v. 37, p.
075023, 2024.

3. D. Chalkiadakis and J. Hizanidis,“Dynamical properties of neuromorphic Josephson junctions,”
Physical Review E, v. 106, p. 044206, 2022.

4. J. Hizanidis, N. Lazarides, and G. P. Tsironis,“Pattern formation and chimera states in 2D SQUID
metamaterials,” CHAOS, v. 30, p. 013115, 2020.
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A CRASH COURSE ON DISPERSIVE SHOCK WAVES

Using the Korteweg-de Vries-Burgers equation we will be presenting a brief but thorough introduction
on the concept of dispersive shock waves. Dispersive shock waves are a phenomenon that occurs
in nonlinear dispersive media, where traditional shock waves are modified by dispersive effects.
Unlike classical shock waves that form sharp discontinuities when nonlinear steepening overcomes
dissipation, dispersive shock waves develop into oscillatory structures. In dispersive media - where
wave speed depends on wavelength or frequency - the dispersion relation prevents the formation of true
discontinuities. Instead of a sharp shock front, these waves evolve into rapidly oscillating wave trains
that connect two different uniform states, with oscillations that typically have decreasing amplitude
away from the shock front and wavelengths much smaller than the overall system scale.
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Karachalios, N.

Mathematical Sciences Research Laboratory (MSRL), Department of Mathematics,
University of Thessaly, Lamia, GR35100 Greece

THE STABILITY AND THE LIFESPAN OF SOLUTIONS OF NONLINEAR SCHRODINGER
EQUATIONS: THE CASE OF NONZERO BOUNDARY CONDITIONS AT INFINITY

The question of whether features and behaviors that are characteristic to completely integrable systems
persist in the transition to non-integrable settings is a central one in the study of nonlinear evolution
equations. This issue is closely related to the broader problem of the stability of evolution equations
[1]. Another fundamental question concerns the lifespan of solutions: whether it is infinite or finite
distinguishes between global-in-time existence and instability phenomena, the latter manifested as
blow-up in finite time.

We examine these questions in the context of the Nonlinear Schrodinger Equation (NLS) and
NLS-type lattices, supplemented with nonzero boundary conditions at infinity [2]-[5]. Numerical
investigations, based on high-accuracy schemes [4], [5], highlight the relevance of the accompanying
mathematical analysis and yield numerical results in excellent agreement with theoretical predictions.

References:

1. T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, Conference Board of the
Mathematical Sciences (CBMS) 106 (American Mathematical Society, Providence, 2006).

2. N. Gialelis, N.I. Karachalios and I.G. Stratis, Regularity of non-vanishing — at infinity or at the
boundary — solutions of the defocusing nonlinear Schrodinger equation. Comm. Partial Differential
Equations 46 (2021), 233-281.

3. D. Hennig, N. I. Karachalios, D. Mantzavinos, J. Cuevas-Maraver and 1. G. Stratis, On the proximity
between the wave dynamics of the integrable focusing nonlinear Schréodinger equation and its non-
integrable generalizations, J. Differential Equations 397 (2024), 106—165.

4. D. Hennig, N. 1. Karachalios, D. Mantzavinos, and D. Mitsotakis, On the lifespan of nonzero
background solutions to a class of focusing nonlinear Schrédinger equations, Wave Motion 132,
Paper No. 103419 (2025).

5. D. Hennig, N. I. Karachalios, D. Mantzavinos, and D. Mitsotakis, On the stability and the lifespan
of nonzero background solutions to a class of Discrete Nonlinear Schrodinger equations, (2025) to
appear.
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APPLICATIONS OF NON-LINEAR TIME SERIES - ANALYSIS IN PHYSICS AND
ENGINEERING

In the present lecture we briefly review several methods of temporal and non-linear time series
analysis, mainly based on phase space reconstruction such as recurrence plots Quadrant Scan, as
well as complex network transformed time series based on the visibility algorithm. We discuss the
main characteristics of the methods and the insight they can provide of the underlying physical,
engineering systems as well as in other systems sch as financial time series, with special focus on
system identification and transition detection, event detection, and spatial variation. We present and
discuss applications from magnetohydrodynamics and turbulent flows [1,2] as well as river systems
[3] and car flow incident detection [4,5] financial data [6,7].

References:

1. A.D. Fragkou, T.E. Karakasidis, I.E. Sarris “Recurrence quantification analysis of MHD turbulent
channel flow”, Physica A, v. 531, p. 121741, 2018

2. A. Charakopoulos, Theodoros Karakasidis, loannis Sarris, Analysis of magnetohydrodynamic
channel flow through complex network analysis, Chaos 31, 043123 (2021)

3. A Fragkou, A. Charakopoulos, T. Karakasidis, A. Liakopoulos, “Non-Linear Analysis of River
System Dynamics Using Recurrence Quantification Analysis”, Applied Math, 2(1), 1-15; (2022)

4. A. Zaitouny, A.D. Fragkou, T. Stemler, D.M. Walker, Y. Sun, T. Karakasidis, “Multiple Sensors
Data Integration for Traffic Incident Detection Using the Quadrant Scan”, Sensors 22 (8), 2933 (2022)
5. A. D. Fragkou, T.E. Karakasidis, & E. Nathanail, “Detection of traffic incidents using nonlinear
time series analysis” Chaos, 28(6), 063108 (2018).

6. A. Charakopoulos, T. Karakasidis “Backward Degree a new index for online and offline change
point detection based on complex network analysis Dynamics”, Physica A: 604, 127929 (2022)

7. K. Papastamatiou, T. Karakasidis “Bubble detection in Greek Stock Market: A DS-LPPLS model
approach” Physica A 587, 12653 (2022)
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Kassotakis, P.
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ON NON-ABELIAN ELASTIC COLLISIONS

We introduce the notion of integrability of partial difference equations in two independent variables
and how it is related to a consistency relation of maps of a specific type. As a prototypical example, we
present the equations that describe non-relativistic elastic collision of two particles in one dimension.
Extending these equations to an arbitrary associative algebra, relativistic elastic collision equations
turn out to be a particular case. Furthermore, we show that these equations can be reinterpreted
as difference systems defined on the Z? graph. Finally, if time permits, we will show how this
reinterpretation relates the linear and the non-linear approach of discrete analytic functions.
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HAMILTONIAN DYNAMICS FOR PLASMA PHYSICS AND FUSION

In this introductory presentation we will discuss the strong relation between Hamiltonian Dynamics
and Fusion Plasma Physics. Starting from some historical remarks and basic concepts of fusion
plasmas, we will present the advantages of the Hamiltonian formalism in describing magnetic field
lines and charged particle orbits.

We will consider integrable Hamiltonian systems describing particle motion under specific magnetic
field symmetries and utilize a transformation to Action-Angle variables. The latter will be shown to
allow for a systematic dynamical reduction as well as the calculation of all the orbital frequencies
(Orbital Spectrum) which is the first step for the study of complex particle dynamics under the presence
of perturbative symmetry-breaking modes rendering the system non-integrable. The resonant character
of the mode-particle interactions suggests that the effect of the perturbations is strongly localized in the
phase space. The specific resonance locations can be predicted in terms of the calculated unperturbed
Orbital Spectrum. Moreover, the existence of Transport Barriers, related to non-twist conditions of the
particle orbits is shown to be predicted, and confirmed by numerical orbit calculations. Hamiltonian
bifurcations and chaos of particle orbits will also be discussed.

The presented methods and results demonstrate the theoretical and practical advantages of the
Hami-ltonian formalism in terms of studying particle energy and momentum transport in fusion
plasmas under the presence of multi-scale perturbations and its implications on the efficient operation
of future fusion devices.
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Tunuo. MoOnuotikwv, Tovemotiuio Aryaiov, Hysuoviko Méyapo, Koplopaat,
83200, Xouog

IIEPIOAIKEE TPOXIEEX KAI AYNAMIKA X YSTHMATA

210 udbnpo ovto Ba eetdcovpe v VIOPEN, TN CNUOGIO Kot TIG WOIOTNTES TOV TEPLOIIKDOV TPOYUDV
0T0. AVVOLUIKG ZVGTAIATO GUVEXOVG Kol JLOKPLTOD ¥pOVOL LE 1010iTEPT) EUPOOT] Kol 6TOL XOUATO-
viava Zvotipato. Apyikd 0o e&etdcovpe To poAO Tov TailovV Ol TEPLODIKES TPOYLEG GTI UEAETN TOV
Avvopkdv cvotnpdatov. Eneita, 6o pedetioovpe tn SuvatdtnTa VIapéng 1 U TEPLOSIKMV TPOYLDV
avaiAoya e TN 0140TOCT TOL ZVOTHUATOG. TN cvvEXELn Oa emkevipmbolpe oto XoATOVIVA GLGTH-
pato kot 8o cuintnoove TPOTOVE EVPECTG KAOMDS Kot TV EVGTADELD TV TEPLOSIKDOV TPOYLDV GTA
ovotnuota ovtd. TEAog Ba eEETAGOVLE GLOTHUATA SLOKPLTOV XPOVOL Kot B0l LEAETGOVLE TN OLOKAdL-
dmoN SMAACIAGHOV TEPLOOOV MG it 000 TPOG T YOUOTIKT) CLUTEPIPOPA.
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EVERYTHING YOU ALWAYS WANTED To KNow ABOUT SOLITONS IN PLASMAS BuTt
WERE AFRAID TO ASK

Large ensembles of charged particles (electrons and ions), aka plasmas, are ubiquitous in Nature. It
is often claimed that 99% of matter in the Universe is in plasma state [1, 2]. By their very nature,
a plasmas is a highly complex many-body system, whose dynamics in subject to a plethora of
physical mechanisms, including long-range inter-particle interactions (““collisions”) and interactions
with electric or/and magnetic fields, among others. The intricate interplay among these mechanisms
allows for a rich dynamics that makes plasmas an excellent test-bed for nonlinear theories [3]. Among a
wide variety of phenomena, collective excitations occur in a plasma: these are propagating vibrations
(i.e. waves), characterized by the inherent dispersion and nonlinearity of the plasma medium, in
addition to various other mechanisms (e.g. dissipation, forcing and “noise”, among others).

This is a pedagogical level presentation, aiming to provide the basic analytical framework needed
to model nonlinear electrostatic waves in a plasma. A plasma fluid a will be adopted as starting
point, considering — in the simplest version of the model — the dynamics of an ion fluid in nonlinear
interaction with an electron “cloud”, assumed to be at thermal equilibrium. This description is known
to give rise to various types of nonlinear waves, including solitary waves (often modeled as solitons),
super-solitons, double layers and envelope solitons, to name but a few.

The presentation will consist of two core parts, as follows.

In Part I, a pseudopotential analysis method will be adopted to link the fluid model to a pseudo-
mechanical problem of particle motion in a nonlinear potential [4, 5]. The resulting nonlinear “motion”
of the system represents a solitary wave, that is, a pulse-like excitation (for the plasma state variables,
i.e. the fluid density and speed, the electrostatic potential and the electric field) with stable, stationary
profile, that propagates through the plasma. An alternative method of analysis will also be presented,
based on a reductive perturbation method, reducing this fluid model to a PDE in the form of a Korteweg
- de Vries (KdV) equation [6, 7]. The KdV equation possesses exact solutions in the form of solitons,
whose form is qualitatively analogous to the result obtained from the exact (i.e. non-perturbative)
pseudopotential method. As expected, the results by these two methods coincide in a certain range of
parameter values (but may differ, in general).

The above analysis has been adopted in the modeling of electrostatic solitary waves in planetary
magnetospheres, including a recent study of Mars’s induced magnetosphere [8, 9]. A remarkable
outcome of this study is the prediction of coexistence of positive and negative polarity solitary waves
(pulses), an aspect absent in e.g. KdV-based approaches. The main results of this line of research will
be briefly presented.

In Part II, a multiple-scale method, tantamount to Newell’s perturbation technique in nonlinear
optics, will be adopted [10]. The fluid model is thus reduced to a PDE in the form of a nonlinear
Schrodinger (NLS) equation modeling the dynamics of the envelope (amplitude) of a wavepacket. The
NLS equation is known to possess analytical solutions in the form of envelope solitons (bright solitons,
or dark solitons, in different parameter ranges). Certain analytical forms (known as breathers), in
particular, have been used as prototypes for freak waves (or rogue waves) [11, 12]. The relevance of
these models to electrostatic and electromagnetic waves in plasmas will be discussed.
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Some recent research results, including a study relating the methodology of Part II to real plasma
experiments on negative-ion plasmas, will be briefly presented [13].

This presentation may be delivered either as one or as a series of (e.g. two) successive lectures,
depending on organization and time constraints.
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CAUSALITY AMD MODELING OF MULTIVARIATE TIME SERIES

In the analysis of multivariate time series, the first objective is the estimation of the connectivity
structure of the observed variables (or subsystems), where connectivity is also referred to as inter-
dependence, coupling, information flow or Granger causality. Depending on the type of analysis one
wants to pursues, also indicated by the size of the data, one selects a connectivity measure to estimate
the driving-response connections among the observed variables. For example, if the multi-variate time
series is very short, one would rather use a linear measure of bivariate (Granger) causality, or even
the linear cross-correlation. On the other extreme of a very long multivariate time series, one would
prefer to use a nonlinear and even multivariate measure of causality, where multivariate measure is
considered a measure that for the estimation of a driving-response relationship of two of the observed
variables, the other observed variables are also considered. When the measure is computed for all
directed pairs of observed variables, a complex network is formed, called also connectivity or causality
network, where the nodes are the observed variables, and the connections are the estimated inter-
dependences. For a network with binary connections the interdependences are discretized to zero (not
significant) and one (significant) by applying a criterion for the significance, e.g., arbitrary threshold
or statistical testing.

In the era of big data and complex systems, the case of high-dimensional time series is of particular
interest, where each time series (observed variable) corresponds to a subsystem, and the underlying
system is composed of many subsystems. In this case, even in the presence of long time series, the
multivariate measure of causality or inter-dependence may fail unless dimension reduction is designed
in the estimation scheme. Dimension reduction in the estimation of direct causality of a driving-
response variable pair indicates to restrict the number of the other observed variables, which is high
to only a small number of them being the most relevant, i.e., most related to the response.

When the connectivity structure of the underlying system is estimated appropriately, it can be
further be exploited to model the multivariate time series and make predictions. Nowadays, machine
learning and particularly deep learning models have dominated the domain of modeling of multivariate
time series, especially when their dimension is high. However, these are black-box models giving no or
little insight onto the underlying system. On the other hand, sparse regression models, which attempt
to find the most relevant explanatory variables to the response variable. In the multivariate time series
setting, the response variable is one of the observed variables at a time head (typically one step ahead)
and the explanatory variables are lag variables of all the observed variables, where for each observed
variable the lag variables are defined for each lag (zero lag at the present time, one lag for one time step
back, etc). The lag variable selection is a crucial step in the sparse regression modeling and different
schemes have been developed implementing for example sophisticated optimization algorithms or
genetic algorithms.

I will present first the framework of connectivity analysis of multivariate time series and focus
on direct connections and many observed variables. In our research group, we have developed
appropriate methodology for this scope and I will also attempt to introduce causality measures
that apply dimension reduction. I will illustrate on simulated data the ability of causality measures
using dimension reduction to identify the underlying complex network (connectivity structure of
the underlying complex system) solely on the basis of the observed multivariate times series. Case
studies on real-world applications will be presented, and in particular multivariate time series records
of epileptic electroencephalograms and world financial markets.

27



31st Summer School - Conference "Dynamic Systems and Complexity”

In the last part, I will move to modeling the multivariate time series and discuss the sparse
regression modeling. I will present some recent work we have done on sparse regression models
of multivariate time series based on the dimension reduction schemes we used for the causality
estimation.
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YaonmoiHzH MH I'PAMMIKON AYNAMIKON X YXTHMATON ME TH BOoHOEIA ME
I'PAMMIKON HAEKTPONIKON KYKAQMATON

Avvapikd ovopdlovtol To GUCTHHATA TTOL EEEAMGGOVTOL GTO XPOVO KOl TEPTYPAPOVTOL LE OLUPOPIKES
eElomoelc | anekovioels. H peAétn avtdv Tov cuoTnUdToOV Topovctdlel HEYAAO EVOLOPEPOV OPOV
LLOG EMTPETEL VAL YVOPIGOVLE TN SLVOLIKT CUUTEPLPOPE TOV GLGTILOTOS KOl Lo diveL TV duvatdTnTa
npoPreymc. [dwaitepa To un YPOUUIKE SUVOUIKE GUGTAATO OTOTEAEGOV OTLLOVTIKO TOUEN HEAETNG
POV TAPoLGLALOVY EVOLAPEPOVTA YOUPUKTNPICTIKA KOl POIVOUEVE OTMOG SLOUKAOOMOELS, YOOTIKT G-
umepipopd k.o Ta duvapukd cuoTiroTo Uropovy va vhomombovv pe m Ponbela Twv NAEKTPIKOV
Kol NAEKTPIK®V KUKA®UAT®V. To yeyovog antd pog 6ivet T duvatdtnta TEPpapatikng enipepfaioong
TOV LOONUATIKOV HoG amoTeAeoUATOV 0ALA Kot TV a&tomoinom tovg o€ epaproyés. O mpdTog Tov
VAOTOINGE UN YPOUUIKE SOLUVOUIKE GUGTAOTO LEG® UM YPOLUUKOV NAEKTPIKOV KUKAMUATOV 1TV O
L. Chua o onoiog £d€1Ee TEPAUOTIKG SLAPOPO PAUVOUEVA, OTTMG 1) YAUOTIKT) GUUTEPLPOPE, Kot EfaAe
TEA0G 0TN GLINTNOT TOL VINPYE TOTE, Y10 TO OV PUIVOUEVO OTTMOG TO XAOG Eivol LOVO HOONUOTIKES
EPEVPECELG KOl KOTAOKELES! XNy Tapovca dtdheén Oa yivel o cvvToun TaPOLGINCT] EVVOLDV TMV
SVVOUIKOV CUOGTNUATOV, TOV U1 YPOLUK®OV NAEKTPIKOV Kot NAEKTPOVIKOV 6ToLyEimV Kot 0o mopov-
oldoovpe Tov TPOTO e ToV omoio pumopel va vAomomBohv ta U1 YPOoUUKE SuVopKd GLGTHKOTE TN
Bonbeto un YpoUK®OV NAEKTPOVIKAOV GTOLYEI®MV KOl KUKA®UATOV.
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1. Bovywtlng, I, koau MehetAidov, E. (2015). Ewcaymyn ota Mn I'pappuxd Avvopikd Zvotiuoto
[[IpomTuytaxd eyyepioto]. Kariimog, Avoiktéc Akadnuaikég Exkddoeic.

2. Maduta, T., kot MeletAidov, E. (2023). Ewdwd Oépato Mn Ipappikig Avvapukng [Metamtoyiokd
eyyxepiowo]. Kaimog, Avowtég Akaompaikéc Exkoooers.

3. Kvrpuaviong I, ko [etpdvn M., (2000). Mn I'pappxé Hiektpikd Kukiopata. Exdooelg Xoy-
ypovn [odeia.
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CHAOS AND THE MELNIKOV THEORY

We present the theory of chaos. We give the definition of chaos and some examles and counterexamples.
We concentrate on the chaotic set of the smale horseshoe and we prove that it is chaotic through its
topological conjugacy with sympolic dynamics i.e. the Bernoulli shift on the doubly infinite series of
symbols. Finally we present the Melnikov theorem that proves chaos through the tranverse intersection
of the stable and unstable manifolds of a saddle point in a Poincare map of a one and a half degrees
of freedom periodic system of differential equations.
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‘LIFTING THE BLANKET’: WHY WHOLESALE ELECTRICITY IN SOUTHEAST
EUROPEAN (SEE) INTERCONNECTED COUNTRIES IS SYSTEMATICALLY HIGHER
THAN IN THE REST OF EUROPE? USING MACHINE LEARNING METHODS OF
CAvusALITY DISCOVERY (CAUSAL STRUCTURE LEARNING, CsL) AND ROLLING

CORRELATIONS TO REVEAL THE ‘REAL’ CAUSES OF PRICE SURGES.

We investigate the key factors that shape the dynamic evolution of Day-Ahead spot prices of seven
European interconnected electricity markets (Austria, Hungary, Slovenia, Romania, Bulgaria, Greece
and Italy), with emphasis on their price surges and discrepancies during the period 2022-2024, that
challenge the reliability and efficiency of the European target model. The high differences in the prices
of the two groups, has generated political reactions from the countries that ‘suffer’ from these price
discrepancies, expressed with different ways (e.g. a noticed reaction is the letter of the Greek Prime
Minister sent to European Commission President). To ‘reveal’ the whole path of surging prices (from
north to south), we employ combination of Machine Learning (ML) approaches in learning the causal
structure of this phenomenon. Local, causal structures learning (LCSL) and Markov Blanket (MB)
learning are combined to ‘lift the blanket’ that covers the ‘true structure’ of the path of causalities,
responsible for the price disparity. Markov Blanket Learning is useful for identifying key fundamental
variables but should be combined with causal structure learning to uncover true causes of price surges.
Finally, we compute the correlation curves of rolling volatility of spot prices as well as of cross-border
transfer availabilities (CBTA) identified as crucial factors by MB and LCSL, of all markets, to study
their volatility spillover (a tool to detect the entire path of volatility propagation from the upstream to
downstream SEE countries). The main findings of this hybrid approach are: the hierarchy of clustering
process of the correlations of volatilities mentioned, between the Central European markets of Austria
(AT), Germany (DE), Czechoslovakia (CZ), Slovenia (SL) and Romania (RO), with those of the South
East European markets of Bulgaria (BG) and Greece (GR), reveals their strong interaction, with the
volatility of Austrian market’s spot price and its CBTAs with DE, CZ, and SI, ‘uncovered’ to be a
pivotal market, behaving as a ‘transmitter’ of spot price and cross-border activity volatility, over its
entire connection path with SEE markets, which finally ‘receive’ the volatility disturbances, causing
their price surge. These findings seem to be important and can inform policy and market decisions for
a better incorporation of the electricity markets of this region in the main body of the European target
model.

Keywords: Electricity wholesale electricity prices surge in SEE, Local causality structure; Markov
blanket; Bayesian tool; wholesale Electricity prices; spot price volatility spillover.
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HAMILTONIAN DYNAMICS AND STRUCTURE FORMATION IN DISK GALAXIES

Disk galaxies are complex systems where stars, gas, and dust evolve within dark matter halos through
gravitational interactions. Among their most prominent features are bars and spiral arms, whose
formation and structure are shaped by nonlinear dynamical processes.

Observational data, theoretical orbital studies using analytic potentials, and fully self-consistent
N-body simulations collectively indicate that the spiral arms are mainly two-dimensional structures.
On the other hand, bars comprise two structural elements: an elongated outer ’slim” region and a more
compact, vertically extended central "’thick” component.

To gain insight into how these structures form and persist, we examine the nature of stellar
orbits within galactic disks. The orbital behavior in both two- and three-dimensional Hamiltonian
systems that model rotating barred potentials provides the foundation for interpreting the observed
morphologies of barred-spiral galaxies. Due to the strong departure from axisymmetry introduced by
bars and spirals, nonlinear dynamical processes are essential in understanding their evolution.

Stellar orbits provide the key to understanding these features. Two-dimensional (2D) orbital
models help explain the dynamics of spiral arms and outer bars, where both regular and chaotic
orbits may play structural roles. However, to explore the vertically extended, central "’thick™ parts of
bars—often observed as boxy or peanut-shaped (b/p) bulges in edge-on galaxies—three-dimensional
(3D) models are essential.

These bulges are supported by specific 3D families of periodic orbits that bifurcate from the central
planar x1 family at vertical resonances. Although many of these families exhibit complex instability,
orbits in their vicinity can still contribute to building the vertical structure, especially through sticky
behavior in phase space.

This talk will present the key orbital mechanisms supporting bars and spirals, with a focus on how
certain orbit families shape b/p bulges and the characteristic X-shaped structures embedded within
them.
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LoCALIZED STRUCTURES IN SATURABLE DISCRETE NLS EQuUATION WITH
NEXT-NEAREST-NEIGHBOR INTERACTIONS

We address the existence of solitons and periodic traveling wave solutions in saturable Discrete NLS
(dNLS) Equation with non-nearest-neighbor (NNN) interactions. Calculus of variations and Nehari
manifolds are employed to establish the existence of discrete solitons. We prove the existence of
periodic travelling waves studying the mixed-type functional differential equations using Palais-
Smale conditions and variational methods.

Keywords: Discrete Nonlinear Schrédinger, Solitons, Travelling Waves, Calculus of Variations [MSC
Classification] 37K40, 35Q55, 46N20, 34K
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PERIODIC, QUASI-PERIODIC, FRACTAL AND RANDOM DNA SEQUENCES: CHARGE
TRANSFER AND TRANSPORT

After an introduction to the structure of nucleic acids DNA and RNA, we will focus on periodic and
aperiodic (quasi periodic, fractal and random) nucleotide sequences. We will give some attention
to genetically determined sequences. We discern charge transfer from charge transport. We give
prominence to the role of trimers or codons. We discern coherent processes (quantum transmission)
from incoherent or thermal processes (hopping). We will describe our methods, i.e., tight binding (TB)
variants (coarse grained or at the atomic level) and based on density functional theory (DFT). Next,
we will present results [1, 2, 3, 4] concerning charge transfer and transport in periodic and aperiodic
nucleotide sequences. Finally, we will give an overview.
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NUMERICAL METHODS OF CHAOS DETECTION

Determining the chaotic or regular nature of orbits of dynamical systems is a fundamental problem
of nonlinear dynamics, having applications to various scientific fields. The most employed method
for distinguishing between regular and chaotic behavior is the evaluation of the maximum Lyapunov
exponent (MLE), because if the MLE > 0 the orbit is chaotic. The main problem of using this chaos
indicator is that its numerical evaluation may take a long -and not known a priori- amount of time
to provide a reliable estimation of the MLE’s actual value. In this talk we will focus our attention
on two very efficient methods of chaos detection: the Smaller (SALI) and the Generalized (GALI)
Alignment Index techniques. We will first recall the definitions of the SALI and the GALI and will
briefly discuss the behavior of these indices for conservative Hamiltonian systems and area-preserving
symplectic maps. Then, we will explain how one can use these methods to investigate the dynamics
of time-dependent dynamical systems, and we will discuss the applicability of these indicators to
dissipative systems. Furthermore, we will present some recently introduced methods to estimate the
chaoticity of orbits in conservative dynamical systems from computations of Lagrangian descriptors
on short time scales.
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BoumiaM CHAOS AND THE OrRIGIN OF BORN’S RULE

A deep understanding of the mechanisms behind chaos generation in Bohmian trajectories is essential
for addressing a fundamental problem in Bohmian Quantum Mechanics (BQM): the dynamical origin
of Born’s Rule (BR). BQM is a well-known interpretation of Quantum Mechanics in which quantum
particles follow deterministic trajectories governed by the so-called Bohmian equations of motion:

dr. _ V.U
Y N ¥ i ) 1
m 2 m( : ) (1)

BQM provides deep insights into quantum phenomena from both theoretical and experimental perspe-
ctives. It is a highly nonlocal quantum theory, where quantum entanglement (QE) plays a central role
in the evolution of Bohmian trajectories. While BR is postulated as an axiom in standard quantum
theory, in BQM one can, in principle, begin with an initial particle distribution that does not satisfy
BR. This raises a critical question: is BR dynamically accessible from arbitrary initial conditions, and
if so, what mechanisms govern this process?

In the last years, we have investigated this question through a series of works, focusing on the
Bohmian dynamics of an entangled two-qubit system built from appropriately engineered coherent
states of the quantum harmonic oscillator. This system is central in Quantum Information theory and
exhibits rich Bohmian dynamics.

We analyzed the basic features of the trajectories in our model across various values of physical
parameters, revealing both ordered (periodic or not) and chaotic trajectories, and examined their
connection to QE. Particular emphasis was placed on the role of the NPXPC (Nodal Point-X-point
complex) mechanism and its direct link to quantum entanglement.

Nodal points, along with their corresponding X-points, form a characteristic structure of the
Bohmian flow known as the ‘nodal point-X-point complex’ (NPXPC). An X-point is an unstable
point of the Bohmian flow located near a nodal point of the wavefunction. It acts as a local hyperbolic
fixed point where nearby trajectories are exponentially repelled along unstable directions and attracted
along stable ones. These points typically occur at local maxima of the quantum potential in the region
surrounding nodal points. The cumulative action of many such scattering events by these NPXPC
structures leads to the saturation of the Lyapunov characteristic number at a positive value, which is
a hallmark of chaos in the system.

Our model, which features infinitely many nodal points arranged on straight lattices when entangle-
ment is non-zero, exhibits increasing chaotic behaviour as entanglement grows. In contrast, when
entanglement is absent, all trajectories remain ordered.

In strongly entangled regimes, we observed that arbitrary initial distributions tend to converge with
high accuracy to Born’s Rule, as they are dominated by chaotic, ergodic trajectories. Specifically,
we found that the long-time distribution of points along chaotic trajectories is independent of the
initial condition. We then explored the implications of ergodicity for the dynamical realization of BR
across different levels of entanglement. But despite the ergodic nature of the chaotic trajectories at all
entanglement values, ergodicity alone is not sufficient for convergence to BR due to the presence of
coexisting ordered trajectories.

Our current research focuses on the impact of the ratio between ordered and chaotic trajectories
within an initial distribution. We have identified this ratio as a critical parameter determining whether
or not BR will emerge dynamically. Consequently, there exist infinitely many initial distributions that
will asymptotically approach BR, but only if their ratio of ordered to chaotic trajectories matches that
of the BR-consistent distribution.
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Recently, we also discovered that fixed unstable points in the inertial frame of reference, referred
to as ‘Y-points’, play a role in the generation of chaos, although their influence is not as significant
as that of the X-points. Together, the X-points and Y-points provide a detailed understanding of the
Lyapunov exponent profiles of chaotic trajectories.

This talk will be areview of our findings. We will begin by introducing the fundamental mechanisms
of chaos in Bohmian trajectories before delving into the details of how the interplay between chaos,
order, and entanglement governs the dynamical emergence of Born’s Rule. We will also emphasize
the importance of the X- and Y-points in characterizing chaotic behavior and the Lyapunov spectrum.
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NON-EXTENSIVE STATISTICAL PHYSICS AND BECK-COHEN SUPERSTATISTICS
APPLIED TO GUTENBERG-RICHTER, OMORI, AND CUMULATIVE BENIOFF STRAIN
PATTERNS

The earthquake generation process is a complex phenomenon, manifested in the nonlinear dynamics
and in the wide range of spatial and temporal scales that are incorporated in the process. Despite the
complexity of the earthquake generation process and our limited knowledge on the physical processes
that lead to the initiation and propagation of a seismic rupture giving rise to earthquakes, the collective
properties of many earthquakes present patterns that seem universally valid. The most prominent is
scale-invariance, which is manifested in the size of faults, the frequency of earthquake sizes and the
spatial and temporal scales of seismicity. The frequency magnitude distribution exhibits a decay that is
commonly expressed with the well-known Gutenberg-Richter (G-R) law. The aftershock production
rate following a main event generally decays as a power-law with time according to the modified
Omori formula. Scale-invariance and (multi)fractality are also manifested in the temporal evolution
of seismicity and the distribution of earthquake epicentres. The organization patterns that earthquakes
and faults exhibit have motivated the statistical physics approach to earthquake occurrence. Based
on statistical physics and the entropy principle, a unified framework that produces the collective
properties of earthquakes and faults from the specification of their microscopic elements and their
interactions, has recently been introduced. This framework, called non extensive statistical mechanics
(NESM) was introduced as a generalization of classic statistical mechanics due to Boltzmann and
Gibbs (BG), to describe the macroscopic behaviour of complex systems that present strong correlations
among their elements, violating some of the essential properties of BG statistical mechanics. Such
complex systems typically present power-law distributions, enhanced by (multi)fractal geometries,
long-range interactions and/or large fluctuations between the various possible states, properties that
correspond well to the collective behaviour of earthquakes and faults. Here, we provide an overview
on the fundamental properties and applications of NESP. Initially, we provide an overview of the
collective properties of earthquake populations and the main empirical statistical models that have
been introduced to describe them. We provide an analytic description of the fundamental theory and
the models that have been derived within the NESP framework to describe the collective properties of
earthquakes. The fundamental laws of Statistical seismology as that of Gutenberg-Richter (GR) and
Omori law a analysed using the ideas of Tsallis entropy and its dynamical superstatistical interpretation
offered by Beck and Cohen.
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To ITEPIOPIEMENO IIPOBAHMA TON TPION XOMATON KAI TO AYNAMIKO
IIEPIBAAAON TOY AIITAOY AXTEPOEIAH 65803 AlAYMOX

XE OUTN TNV EI0AYWOYIKN OWAIN TEPLYPAPOVUE TO QNUCUEVO TEPLOPIGUEVO TPOPANUA TOV TPUDV
COUATOV KOl KAVOVUE M0 EIGOYMYN 6T0 PACIKA TOL SLVOUIKE YOPOKTNPIOTIKA. ZVYKEKPIUEVOL Oa
napaEovpe Tig E10MGELS Kiviomng kot To oAokAnpopa Jacobi, Ba Bpodue T onpeia 10oppomiag Tov
Kot O peketioovpe Ta Opla TG Kivnone. Méow g topng Poincare Oa meprypdyovpe tn tomoloyia
TOV YOPOL PAGEMV KO TO E101) TPOYIDV TOV GUCTHLATOG LE EULPACT) GTOV VITOAOYICUO TV TEPLOOIKMDV
TPOYI®OV Kol TNG evoTdleldg Toug. o va epappdcovpe 1o Tponyoduevo povtédo kot pebodoroyia
OTOV SUMAO 0oTEPOELDN AIOVHOC-ATHOPPOC Kol TNV KiVIOTN KPOV COUATOV KOt SIOGTIILOGVCKEVDV
010 TePIPAAAOV TOV, Ba TpémeL va To enekTeivovE BE@P®OVTAG 0) ZOUOTO TEMEPACUEVNG SLACTOONG
Kot pun oeoatpwkd B) Tn Paputiky dvvaun mwov ackel 0 HA0g wg T€TapTto oo Kot ¥) TNV TiEon TG
NAMokng akTvofoAiog. o LEAETNIGOVUE TNV TPOYLOKT] OLVOLUKT HECH OO TIC TEPLOOIKES TPOYIEG TOV
amAol HOVTEAOL Kol 6T cLVEXELD Bo epappdcovpe TIC EMTALOV duvapelg oG otatapayss. H perétn
NG TPOYLOKNG SUVAUIKNG OTO TAPOUTAV® PUGIKO GOGTNIA EIVOL 1O10HTEPO YPTCLUT Y10 TNV OUCTN KT
arootoAn Hera n omoia éyet Eekvnoet Kat Bo Tdcel oTov S1mAd aoTEPOELdN| 6Ta TEAN TOL 2026.
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TRAVELING FRONTS IN HOMOGENEOUS AND HETEROGENEOUS ENVIRONMENTS

Granular matter can behave — depending on the circumstances — like a solid, a fluid or a gas, yet often
with an unexpected twist owing to the special nature of this complex, multi-particle medium. Here we
present two case studies:

1. Vibrated sand: a counter-intuitive gas [1] — [3]

If granular matter is shaken vigorously, the particles fly about, forming a kind of gas. Unexpectedly,
however, they do not spread out uniformly over the available space as a standard gas would do, but
they tend to cluster together. This spontaneous breakdown of equipartition shows up in a particularly
clear-cut fashion when the space is divided in two compartments, as in the so-called “Maxwell’s
Demon” experiment. We describe this experiment in terms of Dynamical Systems theory and show
how the clustering transition manifests itself as a pitchfork bifurcation.

2. Flowing sand.: roll waves as stick-slip oscillations [4] — [7]

Our second case study focuses on granular matter flowing down a chute, and more specifically,
on the roll wave patterns frequently encountered in this type of flow. These nonlinear waves consist
of long rising flanks followed by abrupt falls and can adequately be described by the generalized
Saint-Venant equations for shallow granular flows. More surprisingly, as we will demonstrate, they
can also be seen as the Fluid Dynamical analogue of the famous stick-slip phenomenon found in many
mechanical systems.
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TURBULENT FLOW AND THE PHENOMENON OF INTERMITTENCY

In nature, the vast majority of fluid flows are turbulent. Therefore, understanding and predicting
turbulence and its temporal evolution is of great importance. In the context of dynamical systems,
intermittency refers to the irregular alternation between phases of periodic behavior and chaotic
dynamics, or between different forms of chaotic behavior.

Pomeau and Manneville identified three types of intermittency, where a nearly periodic system
exhibits irregularly spaced bursts of chaos [1]. These types - Type I, II, and III - are associated with the
approach to a saddle—node bifurcation, a subcritical Hopf bifurcation, and an inverse period—doubling
bifurcation, respectively.

In this presentation, we begin with a brief introduction to turbulence, followed by a discussion of
intermittency in turbulent flows. We then introduce simple mathematical models that capture aspects of
intermittent behavior in turbulence. Finally, we explore more advanced approaches for characterizing
intermittency in turbulent flows.
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