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1. Introduction &Modeling

We have undertaken a study of the modulational
dynamics of wave packets propagating in a one-
dimensional (1D) hybrid Fermi-Pasta-Ulam-Tsingou /
Klein-Gordon type lattice chain, incorporating an arbi-
trary polynomial (i.e. quadratic and/or cubic) coupling
anharmonicity, in the presence of a nonlinear on-site
(substrate) potential.
Consider a nonlinear lattice (chain) whose nth site has
the equation of motion:

mψ̈n =K(ψn+1 + ψn−1 − 2ψn)

+ K β [(ψn+1 − ψn)
3 − (ψn − ψn−1)

3]

−m
(
ω2
0ψn + aψ2

n + bψ3
n

)
,

(1)

where, K is the spring constant,m is the mass and ψn
is the displacement of mass at site n.
The quasi-continuum approximation, viz. setting
ψn(t) ≃ ψ(x, t), and Taylor expanding, ψ(n ± D, t) ≈
ψ ±Dψx +

1

2
D2ψxx · · ·

ψtt − c20ψxx + ω2
0ψ = 3βc20D

2(ψx)
2ψxx − aψ2 − bψ3 . (2)

Here,D is the lattice constant, andwehavedefined the
speed c20 = K(D2/m) .

2. Application to dusty plasma crystals

This research applies directly to themodeling of trans-
verse dust-lattice waves in dusty plasma crystals [1, 2].

Figure 1: Dust grain vibrations in the longitudinal (∼ x̂) and transverse (∼ ẑ)
directions, in a (1d) dust lattice. Note that the longitudinal degree of freedom
is assumed to be “frozen” in this work. Figure adapted from [1].

It has been shown in earlier studies [1] that the equa-
tion of motion for nonlinear transverse dust lattice
waves (TDLW) reads:

d2zn
dt2

=ω2
0,T (2zn − zn+1 − zn−1)

+
a02
r0

[(zn+1 − zn)
3 − (zn − zn−1)

3]

− ω2
gzn − az2n − bz3n .

(3)

Here, the coupling coefficients ω0,T and a02 depend on

the plasma Debye length λD as,
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e−κ
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κ3
,
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κ5
,
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r0
λD

,

(4)
here, q is the charge of the dust particles (assumed to
be constant), r0 is the distance between dust grains,M

is the mass of dust particles and zn is the vertical dis-
placement of the nth dust grain. The parameters ωg, a
and b are found experimentally [1, 3].
In the continuum approximation, (3) will becomes:

ztt + c2Tzxx + ω2
gz = 3a02 r

3
0(zx)

2zxx − az2 − bz3 , (5)

where we used ω2
0,T r

2
0 = c2T . Upon a simple compari-

son, we note that Eq. (5) is formally identical to Eq. (2),
upon a straightforward change in notation.

3. NLSE Framework for Dust Lattices

Applying Newell’s multiple scales technique in its
quasi-discrete version (see details in [4]), we find a so-
lution representing a modulated wavepacket:

zn(t) ≈ϵ
[
ψ̂ ei(knr0−ωt) + c.c

]
+ ε2a

[
−2|ψ̂|2
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g

+
ψ2

3ω2
g
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]
+O(ε3)

(6)

where c.c. denotes the complex conjugate.
The first-harmonic amplitude ψ is given by the NLS

equation:

i
∂ψ

∂T
+ P

∂2ψ

∂X2
+Q|ψ|2ψ = 0 , (7)

where X = ϵ(x − vgt), T = ϵ2t (assuming ϵ ≪ 1) and
vg = ω′(k) denotes the (negative, in this case) group
velocity.
The rescaled (dimensionless) coefficients are given by,

P = −e−κ 1 + κ

κ

1

2ω3
< 0 ∀ k , (8)
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1
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3
− 3b− e−κ

κ2 + 3κ + 3

κ
k4
)
. (9)

In deriving the above, we have rescaled the algebraic

expressions above by normalizing time by ω−1
g and

length by cT/ωg.

4. Focusing (PQ > 0) vs defocusing (PQ <

0) regime

Figure 2: The productPQ is depicted versus the carrier wavenumber k , for var-
ious κ values. Typical values adapted from [3] are: a ≈ −0.5 and b ≈ 0.07.

5. Modulational Instability

WhenPQ > 0, Benjamin–Feirmodulational instability
occurs, with growth rate given by :

Γ = |P ν|
√
ν2crit − ν2 . (10)

Here, the critical wavenumber (νcrit) is defined as:

νcrit = A0

√
2Q

P
,

where, A0 is the wavepacket amplitute. The maxi-
mum growth rate of Γ occurs at : νmax = νcrit/

√
2 .

Figure 3: Modulational instability
growth for varying κ values for arbi-
trary values of k = 0.95 andA0 = 1.

Figure 4: The line represents νcrit vs
κ for arbitrary values of k = 0.95
andA0 = 1.

6. Envelope soliton solutions of the NLS
Equation

Figure 5: Bright envelope soliton for
κ = 1.5, k = 0.82, ue = 1, ρ0 = 0.2,
Ω = 1, T = 0.

Figure 6: Dark envelope soliton for
κ = 1.5, k = 0.5, ue = 1, ρ0 = 0.2,
T = 0.

The Peregrine solution is given by (expression
adapted from [5] ) :

ψ̂ =

√
p0

Q

1− 4(1 + 2i
p0
Q
T )

1 + 4
p0
Q
T 2 +

p0
PQ

X2

 ei p0QT

, (11)

where p0 ∈ R∗
+.

Figure 7: Peregrine soliton for k = 1.5 , p0 = 0.01 and T = 0.

7. Conclusions

• Study: Preliminary investigation of energy
localization in TDLW in dusty plasma crys-
tals.

• Analyzed how focusing vs. defocusing
regimes shift with change in κ.

• Predictions include: envelope modes, MI,
and rogue wave solutions.
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